Exam Review 2021

Name: \qquad

Part A

Directions: Each set of lettered choices below refers to the numbered statements immediately following it. Select the one lettered choice that best fits each statement and them fill in the corresponding oval on the answer sheet. A choice may be used once, more than once, or not at all in each set.

Questions 1-3 refer to the following gases at $0^{\circ} \mathrm{C}$ and 1 atm.

a) Ne
b) Xe
c) O_{2}
d) CO
e) NO

1) Has an average atomic or molecular speed closest to that of N_{2} molecules at $0{ }^{\circ} \mathrm{C}$ and 1 atm
2) Has the greatest density
3) Has the greatest rate of effusion through a pinhole

Questions 4-6 refer to the reactions represented below.

a) $\mathrm{H}_{2} \mathrm{SeO}_{4}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})-->\mathrm{H}_{2} \mathrm{SeO}_{3}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) $\mathrm{S}_{8}(\mathrm{~s})+8 \mathrm{O}_{2}(\mathrm{~g})-->8 \mathrm{SO}_{2}(\mathrm{~g})$
c) $3 \mathrm{Br}_{2}(\mathrm{aq})+6 \mathrm{OH}^{-}(\mathrm{aq})-->5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})-->\mathrm{CaSO}_{4}(\mathrm{~s})$
e) $\mathrm{PtCl}_{4}(\mathrm{~s})+2 \mathrm{Cl}^{-}(\mathrm{aq})-->\mathrm{PtCl}_{6}{ }^{2-}(\mathrm{aq})$
4) A precipitation reaction
5) A reaction in which the same reactant undergoes both oxidation and reduction
6) A combustion reaction

Part B

Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions. Select the one that is best in each case and then fill in the corresponding oval on the answer sheet.
7) In which of the following species does sulfur have the same oxidation number as it does in $\mathrm{H}_{2} \mathrm{SO}_{4}$?
a) $\mathrm{H}_{2} \mathrm{SO}_{3}$
b) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
c) S^{2-}
d) S_{8}
e) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
8) A flask contains 0.25 mole of $\mathrm{SO}_{2}(\mathrm{~g}), 0.50$ mole of $\mathrm{CH}_{4}(\mathrm{~g})$ and 0.50 mol of $\mathrm{O}_{2}(\mathrm{~g})$. The total pressure of the gases in the flask is 800 mm Hg . What is the partial pressure of the $\mathrm{SO}_{2}(\mathrm{~g})$ in the flask?
a) 800 mm Hg
b) 600 mm Hg
c) 250 mm Hg
d) 200 mm Hg
e) 160 mm Hg
9) In the laboratory, $\mathrm{H}_{2}(\mathrm{~g})$ can be produced by adding which of the following to $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$?
I. $1 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$
II. Zn (s)
III. $\mathrm{NaHCO}_{3}(\mathrm{~s})$
a) I only
b) II only
c) III only
d) 1 and II only
e) I, II, and III

$$
2 \mathrm{NH}_{3} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}
$$

10) In liquid ammonia, the reaction represented above occurs. In the reaction $\mathrm{NH}_{4}{ }^{+}$acts as
a) a catalyst
b) both an acid and a base
c) the conjugate acid of NH_{3}
d) the reducing agent
e) the oxidizing agent

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{55}^{141} \mathrm{Cs}+3{ }_{0}^{1} \mathrm{n}+\mathrm{X}
$$

11) Neutron bombardment of uranium can induce the reaction represented above. Nuclide X is which of the following?
a) ${ }_{35}^{92} \mathrm{Br}$
b) ${ }_{35}^{94} \mathrm{Br}$
c) ${ }^{97} \mathrm{Rb}$
d) ${ }_{37}^{92} \mathrm{Rb}$
e) ${ }^{97} \mathrm{Rb}$
12) A compound contains 1.10 mol of $\mathrm{K}, 0.55 \mathrm{~mol}$ of Te , and 1.65 mol of O . What is the simplest formula of this compound?
a) KTeO
b) $\mathrm{KTe}_{2} \mathrm{O}$
c) $\mathrm{K}_{2} \mathrm{TeO}_{3}$
d) $\mathrm{K}_{2} \mathrm{TeO}_{6}$
e) $\mathrm{K}_{4} \mathrm{TeO}_{6}$
13) Approximately what mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(250 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is required to prepare 250 mL of 0.10 M copper (II) sulfate solution?
a) 4.0 g
b) 6.2 g
c) 34 g
d) 84 g
e) 140 g
14) Of the following compounds, which is the most ionic?
a) SiCl_{4}
b) BrCl
c) PCl_{3}
d) $\mathrm{Cl}_{2} \mathrm{O}$
e) CaCl_{2}
15) At $25^{\circ} \mathrm{C}$, aqueous solutions with a pH of 8 have a hydroxide ion concentration, [OH^{-}], of
a) $1 \times 10^{-14} \mathrm{M}$
b) $1 \times 10^{-8} \mathrm{M}$
c) $1 \times 10^{-6} \mathrm{M}$
d) 1 M
e) 8 M

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g})-->\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

16) What volume of $\mathrm{O}_{2}(\mathrm{~g})$ is required to react with excess $\mathrm{CS}_{2}(\mathrm{l})$ to produce 4.0 L of $\mathrm{CO}_{2}(\mathrm{~g})$? (Assume all gases are measured at $0{ }^{\circ} \mathrm{C}$ and 1 atm .)
a) 12 L
b) 22.4 L
c) $1 / 3 \times 22.4 \mathrm{~L}$
d) $2 \times 22.4 \mathrm{~L}$
e) $3 \times 22.4 \mathrm{~L}$
17) A 0.10 M aqueous solution of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, is a better conductor of electricity than a 0.10 M aqueous solution of sodium chloride, NaCl . Which of the following best explains this observation?
a) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is more soluble in water than NaCl is.
b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ has a higher molar mass than NaCl has.
c) To prepare a given volume of 0.10 M solution, the mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ needed is more than twice the mass of NaCl needed.
d) More moles of ions are present in a given volume of $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ than in the same volume of 0.10 M NaCl .
e) The degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in solution is significantly greater than that of NaCl .

Questions 18-19

The graph below shows the titration curve that results when $100 . \mathrm{mL}$ of 0.0250 M acetic acid is titrated with 0.100 M NaOH .

18) Which of the following indicators is the best choice for this titration?

	Indicator Range of	
a)	Methyl orange	$3.2-4.4$
b)	Methyl red Change	

19) What part of the curve corresponds to the optimum buffer action for the acetic acid/acetate ion pair?
a) Point V
d) Along all of section WY
b) Point X
e) Along all of section YZ
c) Point Z
20) An excess of $\mathrm{Mg}(\mathrm{s})$ is added to 100 . mL of 0.400 M HCl . At $\mathrm{O}{ }^{\circ} \mathrm{C}$ and 1 atm pressure, what volume of H_{2} gas can be obtained?
a) 22.4 mL
b) 44.8 mL
c) 224 mL
d) 448 mL
e) 896 mL
21) At a certain temperature, the value of the equilibrium constant, K, for the reaction represented above is 2.0×10^{5}. What is the value of K for the reverse reaction at the same temperature?
a) -2.0×10^{-5}
b) 5.0×10^{-6}
c) 2.0×10^{-5}
d) 5.0×10^{-5}
e) 5.0×10^{-4}
22) The atomic mass of copper is 63.55. Given that there are only two naturally occurring isotopes of copper, ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$, the natural abundance of the ${ }^{65} \mathrm{Cu}$ isotope must be approximately
a) 90%
b) 70%
c) 50%
d) 25%
e) 10%
23) Which of the following represents acceptable laboratory practice?
a) Placing a hot object on a balance pan.
b) Using distilled water for the final rinse of a buret before filling with a standardized solution.
c) Adding a weighed quantity of solid acid to a titration flask wet with distilled water.
d) Using 10 mL of standard strength phenolphthalein indicator solution for titration of 25 mL of acid solution
e) Diluting a solution in a volumetric flask to its final concentration with hot water.
24) Propane gas, $\mathrm{C}_{3} \mathrm{H}_{8}$, burns in excess oxygen gas. When the equation for this reaction is correctly balanced and all coefficients are reduced to their lowest whole number terms, the coefficient for O_{2} is
a) 4
b) 5
c) 7
d) 10
e) 22

$$
2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})-->3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

 according to the equation above, what is the maximum mass of $\mathrm{H}_{2} \mathrm{O}$ that can be produced?
a) 9.0 g
b) 18 g
c) 36 g
d) 72 g
e) 144 g
26) All of the halogens in their elemental form at $25^{\circ} \mathrm{C}$ and 1 atom are
a) conductors of electricity
d) colorless
b) diatomic molecules
e) gases
c) odorless

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{MnO}_{4^{-}}(\mathrm{aq})+3 \mathrm{ClO}_{2^{-}}(\mathrm{aq})-->4 \mathrm{MnO}_{2}(\mathrm{~s})+3 \mathrm{ClO}_{4^{-}}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})
$$

27) According to the balanced equation above, how many moles of $\mathrm{ClO}_{2}-(\mathrm{aq})$ are needed to react completely with 20 mL of $0.20 \mathrm{M} \mathrm{KMnO}_{4}$ solution?
a) 0.0030 mol
b) 0.0053 mol
c) 0.0075 mol
d) 0.013 mol
e) 0.030 mol
28) How can 100. mL of sodium hydroxide solution with a pH of 13.00 be converted to a sodium hydroxide solution with a pH of 12.00 ?
a) By diluting the solution with distilled water to a total volume of 108 mL .
b) By diluting the solution with distilled water to a total volume of 200 mL .
c) By diluting the solution with distilled water to a total volume of 1.0 L .
d) By adding $100 . \mathrm{mL}$ of 0.10 M HCl
e) By adding $100 . \mathrm{mL}$ of 0.10 M NaOH
29) Mixtures that would be considered buffers include which of the following?
I. $0.10 \mathrm{M} \mathrm{HCl}+0.10 \mathrm{M} \mathrm{NaCl}$
II. $0.10 \mathrm{M} \mathrm{HF}+0.10 \mathrm{M} \mathrm{NaF}$
III. $0.10 \mathrm{M} \mathrm{HBr}+0.10 \mathrm{M} \mathrm{NaBr}$
a) I only
b) II only
c) III only
d) I and II
e) II and III
30) Ascorbic acid, $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}(\mathrm{~s})$, is a diprotic acid with $\mathrm{K}_{1}=7.9 \times 10^{-5}$ and $\mathrm{K}_{2}=1.6 \times 10^{-12}$. In a 0.005 M aqueous solution of ascorbic acid, which of the following species is present in the lowest concentration?
a) $\mathrm{H}_{2} \mathrm{O}$ (l)
b) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
c) $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}(\mathrm{aq})$
d) $\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}^{-}$(aq)
e) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}^{-2}(\mathrm{aq})$
31) Which of the following substances is LEAST soluble in water?
a) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
b) KMnO_{4}
c) BaCO_{3}
d) $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
e) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
32) A 2 L container will hold about 4 g of which of the following gases at $0{ }^{\circ} \mathrm{C}$ and 1 atm?
a) SO_{2}
b) N_{2}
c) CO_{2}
d) $\mathrm{C}_{4} \mathrm{H}_{8}$
e) NH_{3}
33) If 200. mL of $0.60 \mathrm{M} \mathrm{MgCl}_{2}(\mathrm{aq})$ is added to 400 mL of distilled water, what is the concentration of $\mathrm{Mg}^{+2}(\mathrm{aq})$ in the resulting solution? (Assume volumes are additive.)
a) 0.20 M
b) 0.30 M
c) 0.40 M
d) 0.60 M
e) 1.2 M

Review Answers:

1) D
2) B
3) A
4) D
5) C
6) B
7) E
8) E
9) E
10) C
11) E
12) C
13) B
14) E
15) C
16) A
17) D
18) D
19) A
20) D
21) E
22) D
23) C
24) B
25) A
26) B
27) A
28) C
29) B
30) E
31) C
32) C
33) A
