Chapter 18 Questions

Sections 18.1

- 1a) What is meant by the term oxidation? b) In which side of an oxidation half-reaction do the electrons appear?
- c) What is meant by the term oxidant?

- 2a) What is meant by the term reduction?
- b) In which side of a reduction half-reaction do the electrons appear?
- c) What is meant by the term reductant?
- 3) In each of the following balanced redox equations, identify those elements that undergo changes in oxidation number and indicate the magnitude of the change in each case.
- a) I_2O_5 (s) + 5 CO (g) --> I_2 (s) + 5 CO₂ (g)
- b) 2 Hg^{+2} (aq) + N_2H_4 (aq) --> 2 Hg (l) + N_2 (g) + 4 H^+ (aq)
- c) $3 H_2 S$ (aq) + $2 H^+$ (aq) + $2 NO_3^-$ (aq) --> 3 S (s) + 2 NO (g) + $4 H_2 O$ (l)
- d) PBr_3 (l) + 2 H_2O (l) --> H_3PO_3 (aq) + 3 HBr (aq)
- e) $Ba^{+2}(aq) + 2OH(aq) + H_2O_2(aq) + 2ClO_2(aq) --> Ba(ClO_2)_2(s) + 2H_2O(l) + O_2(q)$
- f) $NaI(aq) + HOCl(aq) --> NaIO_3(aq) + 3 HCl(aq)$
- 4) Complete and balance the following half reactions. In each case, tell whether oxidation or reduction occurs.
- a) Sn^{+2} (aq) --> Sn^{+4} (aq)
- b) TiO_2 (s) --> Ti^{+2} (aq) (acidic sol'n)
- c) HOCl (aq) --> Cl₂ (aq) (acidic sol'n)
- d) La (s) --> La(OH)3 (s) (basic sol'n)
- e) $NO_{3^{-1}}$ (aq) --> $NO_{2^{-1}}$ (aq)
- $g) NH_4^+ (aq) --> N_2 (q)$
- 5) Complete and balance the following equations:
- a) $Cr_2O_7^{-2}$ (aq) + I^{-1} (aq) --> Cr^{+3} (aq) + IO_3^{-1} (aq)
- b) MnO_4^- (aq) + CH_3OH (aq) --> Mn^{+2} (aq) + HCO_2H (aq)
- c) Tl_2O_3 (s) + NH_2OH (aq) --> TlOH (s) + N_2 (g)
- d) As (s) + ClO_3^{-1} (aq) --> H_3AsO_3 (aq) + HClO (aq)
- e) H_2O_2 (aq) + Cl_2O_7 (aq) --> ClO_2^{-1} (aq) + O_2 (g)
- f) $Pb(OH)_4^{-2}$ (ag) + ClO^{-1} (ag) --> PbO_2 (s) + Cl^{-1} (ag)
- $q) NO_{2^{-1}}(aq) + Cr_{2}O_{7^{-2}}(aq) --> Cr^{+3}(aq) + NO_{3^{-1}}(aq)$
- h) $MnO_{4^{-1}}(aq) + Br^{-1}(aq) --> MnO_{2}(s) + BrO_{3^{-1}}(aq)$

- (basic sol'n) f) $H_2O(l) --> H_2(g)$ (basic sol'n) (acidic sol'n)
 - acidic solution
 - acidic solution
 - basic solution acidic solution
 - basic solution
 - basic solution
 - acidic solution
 - basic solution

- Sections 18.2 & 18.3
- 6) A voltaic cell is constructed by putting a silver strip in a solution of AgNO₃ and another nickel strip in a solution of NiCl₂. The overall reaction is
- $2 \text{ Ag}^+ \text{ (aq)} + \text{Ni (s)} --> 2 \text{ Ag (s)} + \text{Ni}^{+2} \text{ (aq)}$
- a) Write the half reactions that occur in the two electrode compartments.
- b) Which electrode is the anode, and which is the cathode?
- c) Indicate the signs of the electrodes.
- d) Do electrons flow from the silver electrode to the nickel electrode or from the nickel to the silver?
- e) In which direction do the cations and anions migrate through the solution?
- 7a) Which end of a D-size battery corresponds to the higher potential energy for the electrons? b) Is the cell potential of a D-size battery positive or negative?

- 8a) What is standard reduction potential? b) Based on the standard reduction potentials listed in Appendix 5.5, which is the more favorable process: the reduction of Ag⁺ (aq) to Ag (s) or the reduction of Sn^{+2} (ag) to Sn (s)?
- 9) Using standard reduction potentials, calculate the standard emf for each of the following reactions:
- a) H_2 (g) + I_2 (s) --> 2 H^+ (aq) + 2 I^{-1} (aq)
- b) Ni (s) + 2 Ce⁺⁴ (aq) --> Ni⁺² (aq) + 2 Ce⁺³ (aq)
- c) O_2 (g) + 2 H_2S (g) --> 2 H_2O (l) + 2 S (s)
- d) 2 Al^{+3} (aq) + 3 Cd (s) --> 2 Al (s) + 3 Cd^{+2} (aq)
- e) $H_2(g) + F_2(s) --> 2 H^+(aq) + 2 F^{-1}(aq)$
- f) $Cu^{+2}(aq) + Ca(s) --> Cu(s) + Ca^{+2}(aq)$
- 10) From each of the following pairs, use data in Appendix 5.5 to choose the one that is the stronger oxidizing agent:
- a) Cl_2 (g) or Br_2 (l)
- b) Ni⁺² (aq) or Cd⁺² (aq)
- c) MnO₄- (aq) or SO₄-2 (aq)
- d) H_2O_2 (aq) or O_2 (g)

11) The standard reduction potentials of the following half reactions are given in Appendix 5.5:

Sections 18.4 & 18.5

- 12a) What is the relationship between the emf and the spontaneity of a reaction?
- b) Which of the reactions in question (9) are spontaneous under standard conditions?
- c) What is the ΔG^{O} at 298 K for each of the reactions in question (9)?
- 13) For each of the following reactions, write a balanced equation, calculate the emf, and calculate ΔG^{O} at 298 K.
- *a)* Aqueous iodide ion is oxidized to I_2 (s) by Hg_2^{+2} (aq).
- b) Cr^{+3} (aq) is oxidized to Cr_2Or^2 (aq) by Ni^{+2} (aq).
- 14) Determine whether the following reactions are spontaneous or not:

b)
$$2 \text{ Fe}^{+3}$$
 (aq) + 2 I^{-} (aq) --> 2 Fe^{+2} (aq) + I_2 (s)

c)
$$H_2(g) + 2Ag^+(aq) -> 2Ag(s) + 2H^+(aq)$$

d)
$$Fe^{+2}$$
 (aq) + Cr^{+3} (aq) --> Fe^{+3} (aq) + Cr^{+2} (aq)

Section 18.8

- 16a) A Cr^{+3} (aq) solution is electrolyzed using a current of 9.75 A. What mass of Cr (s) is plated out after 1.50 days?
- b) What amperage is required to plate out 0.50 mol Mg from a Mg⁺² solution in a period of 18 hours?
- c) In the electrolysis of aqueous NaCl, how many liters of Cl₂ (at STP) are generated by a current of 16.8 A for a period of 90.0 min?

Review

- 1) Consider the following reactions at standard conditions:
- i) NH_4C1 (s) + 2 O_2 (g) --> NH_4C1O_4 (s)
- ii) C_2H_2 (g) + 4 Cl_2 (g) --> 2 CCl_4 (l) + H_2 (g)
- iii) $TiCl_4$ (g) + 2 H_2O (l) --> TiO_2 (s) + 4 HCl (g)
- a) Which of the reactions is the most endothermic?
- b) Which of the reactions create the most disorder?
- c) Which reaction(s) is spontaneous?
- 2) What volume of CO_2 is produced by burning 1000 g of butane (C_4H_{10}) at 300 K and 780 mmHg?

- a) Determine the combination of these half-cell reactions that leads to the largest positive cell emf, and calculate the value.
- b) Determine the combination of these half-cell reactions that leads to the smallest positive cell emf, and calculate the value.
- 15) A voltaic cell is constructed that uses the following reaction and operates at 298 K:
- Zn (s) + Cd^{+2} (aq) --> Zn^{+2} (aq) + Cd (s) a) What is the emf of this cell under standard conditions?
- b) What is the emf of this cell when $[Cd^{+2}] = 1.50 \text{ M}$ and $[Zn^{+2}] = 0.150 \text{ M}$?
- c) What is the emf of this cell when $[Cd^{+2}] = 0.0750 \text{ M}$ and $[Zn^{+2}] = 0.950 \text{ M}$?
- 16a) Draw a picture of a voltaic cell with the cell notation $Mn \mid Mn^{+2} \mid |Ag| Ag^+$. Identify the anode and the cathode.
- b) Determine the standard cell potential and the cell potential if the manganese and silver solution were 0.0050 M and 0.010 M, respectively.
- c) If you want a maximum positive cell potential, do you want a higher concentration of Mn^{+2} or Ag^+ ?
- d) How much time would be needed to plate out 1.8 grams of lead from a lead (II) nitrate solution using a current of 2.5 A?

 e) Calculate the mass of Li formed by electrolysis of molten LiCl by a current of 75000 A for a period of 24 hours.
- f) 25.0 grams of Mg are needed from molten MgCl₂. How many amps are needed to make the Mg in 2 hours?
- 3) 345 mL of a 0.595 M solution of $Ca(OH)_2$ needs to be neutralized for disposal. The only available acid is a 6.00 M HBr solution. How much of the HBr solution is needed to bring the pH to neutral?
- 4) A 35.0 mL sample of nitrous acid has a concentration of 0.250 M.
- a) What is the pH of the solution?b) What would be the pH of the solution if 1.45 g of potassium nitrite were added to the solution (assuming on volume change)?