Chapter 17 Questions

Section 17.1

 Which of the following processes are spontaneous and which are nonspontaneous:

 a) The melting of ice cubes at -5 °C and 1 atm.
 b) Dissolution of sugar in a cup of hot coffee.
 c) The reaction of nitrogen atoms to form N₂ at 25 °C and 1 atm.
 d) Alignment of iron filings in a magnetic field
 e) Formation of CH₄ and O₂ molecules from CO₂ and H₂O at room temperature and 1 atm.
 f) Water flowing up hill

g) A fire spreading in a purely nitrogen environment.

2) A 19th Century chemist suggested that all chemical processes that proceed spontaneously are exothermic. Is this correct?

3a) What is another term for a thermodynamically favorable process?b) What is another term for a process that is not thermodynamically favorable?

4a) What is meant by calling a process irreversible?

b) After an irreversible process, the system is restored to its original state. What can be said about the restoration process?

Sections 17.2 & 17.5

6a) Describe a process for which the entropy of the system decreases.

b) What is the sign of ΔS for the process in part (a)?

7a) In a chemical reaction, two moles of gaseous reactants are converted into 3 moles of gaseous products. Predict the sign of ΔS .

b) In a chemical reaction, two gases combine to form a solid. Predict the sign of ΔS .

8a) Express the second law of thermodynamics in your own words.

b) If the entropy of the system increases during a reversible process, what can you say about the entropy change of the surroundings?

9a) State the third law of thermodynamics in your own words.

b) What is the difference between translational motion, vibrational motion and rotational motion of a molecule?

5) The normal freezing point of hexane is -95 $^{\circ}$ C.

a) Is the freezing of hexane an endothermic or exothermic process?

b) Is the melting of hexane an endothermic or exothermic process?

c) In what temperature range is the freezing of hexane a spontaneous process?

d) In what temperature range is it a

nonspontaneous process?

e) Is there any temperature at which liquid and solid hexane are in equilibrium? Explain.f) Is this melting/freezing process of hexane reversible or irreversible? Explain.

6) A system goes from State 1 to State 2 and back to State 1. What is the relationship between the value of ΔE for going from State 1 to State 2 to that for going from State 2 back to State 1?

7) A small amount of a toxic gas is released in a room. Describe the process in terms of reversibility and spontaneity.

10) Predict the sign of entropy change for the system in each of the following reactions:
a) 2 SO₂ (g) + O₂ (g) --> 2 SO₃ (g)
b) Ba(OH)₂ (s) --> BaO (s) + H₂O (g)
c) CO (g) + 2 H₂ (g) --> CH₃OH (l)
d) FeCl₂ (s) + H₂ (g) --> Fe (s) + 2 HCl (g)
e) BaCl₂ (aq) + Na₂SO₄ (aq) --> 2 NaCl (aq) + BaSO₄ (s)
f) 2 NOCl (g) --> 2 NO (g) + Cl₂ (g)

11) For each of the following pairs, indicate which substance possesses the larger standard entropy:

a) 1 mol of O_2 at 0 oC and 1 atm or 1 mol of O_2 at 200 oC and 1 atm

b) He (g) at 3 atm pressure or at 1.5 atm pressure

c) 0.5 mol of N_2 at 298 K and 20 L volume or 0.5 mol of N_2 at 298 K and 40 L volume

d) 100 g Na₂SO₄ (s) at 30 $^{\rm o}{\rm C}$ or 100 g Na₂SO₄ (aq) at 30 $^{\rm o}{\rm C}$

e) $1 \mod \text{of } CO_2$ (g) at STP or $1 \mod \text{of } O_2$ (g) at STP f) Equal volume of $1.0 \mod \text{MaCl}$ (aq) or $1.0 \mod \text{K}_2\text{SO}_4$ (aq) 12) Using Appendix 4, compare the standard enthalpies at 25 °C for the following pairs. For each pair, explain the difference in entropy. a) I_2 (g) and I_2 (s)

b) 1 mol N_2O_4 (g) and 2 mol NO_2 (g)

c) 1 mol MgCO $_3$ (s) and [1 mol MgO (s) plus 1 mol CO $_2$ (g)]

d) 1 mol NaCl (s) and [1 mol Na⁺ (aq) plus 1 mol Cl⁻ (aq)]

e) 1 mol HBr (g) and 1 mol HCl (g)

Sections 17.4 & 17.6

15a) For a process that occurs at constant T and P, the value of ΔG is positive. What can you conclude?

b) What is the meaning of the standard free energy change, ΔG^o, as compared with ΔG?
c) For a certain process, ΔG is large and negative. Will the process occur rapidly?

16) For a certain chemical reaction, $\Delta H^{\rm o}$ = -35.4 kJ and $\Delta S^{\rm o}$ = -85.5 J/K.

a) Is the chemical reaction exothermic or endothermic?

b) Does the reaction lead to an increase or decrease in the disorder of the system? c) Calculate ΔG^{0} for the reaction at 298 K. d) Is the reaction thermodynamically favorable at 298 K?

17) Using data in Appendix 4, calculate ΔH° , ΔS° and ΔG° at 298 K for each of the following reactions. In each case show that $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$. Tell whether the reaction is spontaneous or not.

a) H_2 (g) + F_2 (g) --> 2 HF (g)

b) PH_3 (g) + 2 O_2 (g) --> H_3PO_4 (s)

c) 2 CH₃OH (g) + H₂ (g) --> C₂H₆ (g) + 2 H₂O (g)

d) P_4O_{10} (s) + 6 H_2O (l) --> 4 H_3PO_4 (aq)

 $e) P_4 (g) + 10 F_2 (g) --> 4 PF_5 (g)$

13) Use Appendix 4 to compare the absolute entropies of the following gaseous hydrocarbons: methane (CH₄), ethane (C₂H₆), propane (C₃H₈) and butane (C₄H₁₀). What do you conclude about the trends in S^o as the number of carbon atoms increase?

14) Using S^o values from Appendix 4. calculate the Δ S^o values for the following reactions: a) C₂H₄ (g) + H₂ (g) --> C₂H₆ (g) b) N₂O₄ (g) --> 2 NO₂ (g) c) Be(OH)₂ (s) --> BeO (s) + H₂O (g) d) 2 CH₃OH (g) + 3 O₂ (g) --> 2 CO₂ (g) + 4 H₂O (g)

18) From the values given for ΔH^{O} and ΔS^{O} , calculate ΔG^{O} for each of the following reactions at 298 K. If the reaction is not spontaneous under standard conditions at 298 K, at what temperature (if any) would the reaction be spontaneous?

a) 2 PbS (s) + 3 O₂ (g) --> 2 PbO (s) + 2 SO₂ (g), Δ H^o = -844 kJ, Δ S^o = -165 J/K b) N₂ (g) + 3 Cl₂ (g) --> 2 NCl₃ (g), Δ H^o = 460 kJ, Δ S^o = -275 J/K

19a) A particular reaction is spontaneous at 450 K. The reaction is endothermic by 34.5 kJ. What can you conclude about the sign and magnitude of ΔS for the reaction? b) Another reaction is not thermodynamically favorable at 45 OC. The entropy change for the reaction is 72 J/K. What can you conclude about the sign and magnitude of ΔH ?

20) For a particular reaction, ΔH = -32 kJ and ΔS = -98 J/K. Assume that ΔH and ΔS do not vary with temperature.

a) At what temperature will the reaction have $\Delta G = 0$?

b) If T is increased from that point, will the reaction be spontaneous or nonspontaneous?

Section 17.7 & 17.8

21) Indicate whether ΔG increases, decreases or does not change when the partial pressure of H₂ is increased in each of the following reactions: a) N₂ (g) + 3 H₂ (g) <==> 2 NH₃ (g) b) 2 HBr (g) <==> H₂ (g) + Br₂ (g) c) 2 H₂ (g) + C₂H₂ (g) <==> C₂H₆ (g) d) H₂ (g) + F₂ (g) <==> 2 HF (g) e) C₂H₆ (g) <==> 2 C (s) + 3 H₂ (g)

22a) At 300 K, the reaction N₂ (g) + 3 H₂ (g) <==> 2 NH₃ (g),
K_p = 9.60. What is the value of ΔG?
b) A reaction at 20 °C has a free energy of +12.6 kJ/mol. What is the K_p?
c) At equilibrium, the reaction
2 NO (g) + Cl₂ (g) <==> 2 NOCl (g) has P_{NO} = 0.095 atm, P_{Cl2} = 0.171 atm and P_{NOCl} = 0.28 atm. What is the ΔG for the reaction? 23) Consider the reaction 2 NO₂ (g) \leftrightarrows N₂O₄ (g). a) Using data from Appendix 4, calculate ΔG^{0} at 298 K.

b) Calculate ΔG at 298 K if the partial pressure of NO₂ and N₂O₄ are 0.40 atm and 1.60 atm, respectively.

24) Calculate the ΔG for the reaction $H_2(g) + F_2(g) \longrightarrow 2$ HF (g) at 700 K and when the pressures for the gases are 0.30 atm, 0.50 atm and 1.2 atm for H₂, F₂ and HF, respectively. d) P₄O₁₀ (s) + 6 H₂O (l) \longrightarrow 4 H₃PO₄ (aq)

25) Use data from Appendix 4 to calculate K_p at 298 K for each of the following reactions: a) H₂ (g) + Br₂ (g) \leftrightarrows 2 HBr (g) b) C₂H₅OH (l) \leftrightarrows C₂H₄ (g) + H₂O (l) c) C₂H₂ (q) + H₂O (q) \leftrightarrows C₂H₄O (q)

Review

The methane, CH₄, that escapes from a gas jet comes out at a rate of 2 CFM (cubic feet per minute). The methane gas is measured to have a temperature of 19 $^{\circ}$ C coming out of the jet in a classroom that has an atmospheric pressure of 98.6 kPa. Assume ideal conditions for the gas. Suppose the methane is used to directly heat a 500 g piece of copper metal (specific heat = 0.380 J/gK) for 30 seconds.

1) What is the density of the methane gas in the room?

2) How much heat is generated by the combustion of methane (ΔH_{rxn} = -890 kJ)?

3) Assuming that 70% of the heat generated is absorbed by the copper, what is the final temperature of the copper?

4) The combustion of the methane produces how many grams of carbon dioxide? How many liters at lab conditions?