Acids and Bases

- Properties
- Defining Acids and Bases
- pH and pOH

Arrhenius Definition

Arrhenius (1884) said that acids and bases release specific ions in water:

- Acids dissociate to produce H⁺ ions in water
- Bases dissociate to produce OH⁻ ions in water

Bronsted-Lowry Definition

- Bronsted and Lowery independently (1923) said that acids and bases can be thought of H⁺ donors and acceptors:
 - Acids donate H⁺ ions
 - Bases accept H+ ions
- Water can either accept or donate a H⁺ ions. When water accepts a H⁺ ion (H_3O^+) , it is called hydronium.

Conjugate Acid-Base Pairs

In acid-base equilibria, both the forward and reverse reactions involve proton transfers. In the reaction:

 $\mathsf{NH}_3\left(g\right)+\mathsf{H}_2\mathsf{O}\left(\mathsf{I}\right)<->\mathsf{NH}_4^+\left(\mathsf{aq}\right)+\mathsf{OH}^-\left(\mathsf{aq}\right)$

- Because it is a reversible reaction, NH_4^+ is involved in a reverse proton transfer, in which it gives up a proton.
- In the reverse reactions, the products are called conjugate acid and conjugate base to identify them as reverse reactants.

Categories for acids-bases

- Strong acids completely transfer their protons to water, the conjugate bases do not accept (or negligibly accept) protons
- 2) Weak acids partially dissociate or donate protons to solution. The weak conjugate base also partially accepts protons.
- 3) Substances with negligible acidity that contain hydrogen have strong conjugate bases.

Self-ionization of Water

Water can self ionize, which means that if conditions are right, two molecules of water can produce a hydronium ion and a hydroxide ion:

 $2 H_2O$ (I) <==> $H_3O^+(aq) + OH^-(aq)$ When this happens, we can write the equilibrium constant expression, which is given a special symbol: K_w

All aqueous solutions have a $K_w = 1.0 \times 10^{-14}$

pН

- The pH scale, designed by Sorensen, was a proposal that expresses acidity and basicity in a more compact form.
- Since the molar concentration of hydronium is different in different substances, we use a scale to show this concentration.

Formula for pH:

 $pH = -log [H_3O +]$

A pH of 0 is very acidic. A pH of 14 is very basic. A pH of 7 is neutral.

pOH

Similar to pH, except pOH is a scale to show the concentration of OH - ions in solution.

Formula for pOH:

 $pOH = -log [OH \cdot]$

Would a substance with a pOH of 6 be an acid or base? How about a pOH of 10?

Strong Acids & Bases

Strong acids and bases dissociate completely in water. Therefore, the molarity of the [H⁺] will always be equal to the molarity of the monoprotic acid:

HCl (g) --> H⁺ (aq) + Cl⁻ (aq)

If the molarity of the HCI was 0.1 M, then the [H+] will also be 0.1M

What if the acid or base is a polyprotic, like H_2SO_4 ?

Weak Acids

Because weak acids only partially dissociate in water, the dissociation is in equilibrium, and we can write an equilibrium expression (K_a)

Ex: $HCHO_2$ (aq) <==> H^+ (aq) + CHO_2^- (aq)

$$\mathbf{K}_{a} = \frac{[\mathrm{H}^{+}] [\mathrm{CHO}_{2}^{-}]}{[\mathrm{HCHO}_{2}^{-}]}$$

Weak Acids & pH

- From the pH of a given concentration solution, it is possible to determine the K_a of the acid.
- Ex. A prepared solution of 0.10 M formic acid, HCHO₂, has a measured pH of 2.38. What is the K_a for the acid?

Weak Acids & pH

Using the K_a for an acid, it is possible to determine the pH of a solution.

Ex. What is the pH of a 0.30 M acetic acid solution ($K_a = 1.8 \times 10^{-5}$)

Relative Strengths of Acids & Bases

- The more readily a substance gives up a proton, the less readily the conjugate base accepts a proton.
- Or, the stronger the acid, the weaker the conjugate base.

ſ	-	HCI	CI.	90	
Ł	ē	H ₂ SO ₄	HSO4	101	0
Į.	5	HNO ₃	NO3	ž	ISC
		H+ (aq)	H ₂ O		e la
		HSO4	SO42		bu i
t		H ₃ PO ₄ HF	H ₂ PO ₄		angth
		HC2H3O2	C2H3O2		stre
	¥	H ₂ CO ₃	HCO3	¥	e.
8	We	H ₂ S	HS'	We	Ba
eas		H2PO4	HPO42		
ğ		NH4*	NH ₃		
2		HCO3	CO32.		+
ĕ		HPO42	PO43"		
2		H ₂ O	OH,		
5	Ble	HS'	S2.	Bu	100 percent
ĕ	916	OH.	02	the second	protonated
•	ž	H ₂	H,	00) in H ₂ O

Weak Bases

Similar to weak acids, a weak base is a base that only partially dissociates in water, like $\rm NH_3$.

 $NH_3 \text{ (aq)} + H_2O \text{ (I)} <==> NH_4^+ \text{ (aq)} + OH^- \text{ (aq)}$

The base dissociation constant (K_b) is calculated in a similar way to ${\rm K}_{\rm a}.$

$\mathbf{K}_{b} = \frac{\left[\mathbf{NH}_{4}^{+}\right]\left[\mathbf{OH}^{-}\right]}{\left[\mathbf{NH}_{3}\right]}$

From the K_{b} , it is possible to calculate the pOH.

K_b problems

- 1) A 0.5 M solution of methylamine, CH_3NH_2 , has a pH of 12.2. What is the K_h of the base?
- 2) A 0.5 M solution of NH $_3$ is created. The K_b for ammonia is 1.8 x 10⁻⁵.
- a) What is the OH⁻ concentration for the solution at equilibrium?
- b) What is the pH of the solution?

Weak Acid Lab Ka's

Weak Acid Formula	Ka	
KHSO3	6.4 x 10 ⁻⁸	
HC ₂ H ₄ O ₃	1.6 x 10 ⁻⁴	
KHC ₈ H ₄ O ₄	3.9 x 10 ⁻⁶	
CH3CO2C6H4COOH	3.2 x 10 ⁻⁴	
KHSO4	1.0 x 10 ⁻²	
KH ₂ PO ₄	6.2 x 10 ⁻⁸	
KHC₄H₄O ₆	4.6 x 10 ⁻⁵	

Relationship of K_a and K_b

When two reactions are added together to give a third reaction, the equilibrium constant of the third reaction is the product of the first two.

With acid-conjugate base pairs:

 $K_a \cdot K_b = K_w$ p $K_a + pK_b = pK_w$

Salt solutions

- Salts that react with water in solution to create H⁺ or OH⁻ ions undergo hydrolysis and create solutions with pHs that may be different than neutral.
- The pH of a salt solution can be predicted by looking at the strength of the acids and bases that made it.

Rules for pH of salt solutions

- 1) Salts derived from a strong acid and a strong base is neutral.
- 2) Salts derived from a strong base and a weak acid will have pH > 7.
- Salts derived from a weak base and a strong acid will have a pH < 7.
- Salts derived from a weak acid and a weak base will have a pH dependent on which is greater between the K_a of the conjugate acid and the K_b of the conjugate base.

pH of a salt

A solution of 0.15 M NaF is made. What is the pH of that solution?

Titration

Titration is a way to identify unknown concentrations of acids or bases.

In titration reactions, you neutralize an unknown acid (base) with a known concentration of base (acid). By knowing the amount of moles of base (acid) added, you can determine the moles of acid (base) neutralized.

Titration Curves

- Titration curves are designed to graphically represent and determine the equivalence point during a titration.
- Equivalence point point at which the $[H_3O^+]$ is equal to the $[OH^-]$
- End point of an indicator pH where the indicator changes color.